The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts.

نویسندگان

  • Nicole K Richards-Henderson
  • Crisand Anderson
  • Cort Anastasio
  • Barbara J Finlayson-Pitts
چکیده

The photochemistry of nitrate ions in bulk aqueous solution is well known, yet recent evidence suggests that the photolysis of nitrate may be more efficient at the air-water interface. Whether and how this surface enhancement is altered by the presence of different cations is not known. In the present studies, thin aqueous films of nitrate salts with different cations were deposited on the walls of a Teflon chamber and irradiated with 311 nm light at 298 K. The films were generated by nebulizing aqueous 0.5 M solutions of the nitrate salts and the generation of gas-phase NO2 was monitored with time. The nitrate salts fall into three groups based on their observed rate of NO2 formation (R(NO2)): (1) RbNO3 and KNO3, which readily produce NO2 (R(NO2) > 3 ppb min(-1)), (2) Ca(NO3)2, which produces NO2 more slowly (R(NO2) < 1 ppb min(-1)), and (3) Mg(NO3)2 and NaNO3, which lie between the other two groups. Neither differences in the UV-visible spectra of the nitrate salt solutions nor the results of bulk-phase photolysis studies could explain the differences in the rates of NO2 production between these three groups. These experimental results, combined with some insights from previous molecular dynamic simulations and vibrational sum frequency generation studies, show that cations may impact the concentration of nitrate ions in the interface region, thereby directly impacting the effective quantum yields for nitrate ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of gas phase NO2 and halogens from the photolysis of thin water films containing nitrate, chloride and bromide ions at room temperature.

Nitrate and halide ions coexist in particles generated in marine regions, around alkaline dry lakes, and in the Arctic snowpack. Although the photochemistry of nitrate ions in bulk aqueous solution is well known, there is recent evidence that it may be more efficient at liquid-gas interfaces, and that the presence of other ions in solution may enhance interfacial reactivity. This study examines...

متن کامل

SURFACE MODIFICATION OF ANALCIME FOR REMOVAL OF NITRITE AND NITRATE FROM AQUEOUS SOLUTIONS

The capacity of natural zeolites to absorb anionic pollutants from water is limited. This limitation can be overcome by modifying the surface of the minerals with organic cations. In this research, natural zeolite, Analcime was used for removing the nitrate and nitrite impurities from aqueous solutions. The surface of the zeolite was modified by tetramethylammonium and tetraethylammonium ions t...

متن کامل

Photochemical production and release of gaseous NO2 from nitrate-doped water ice.

Temperature-programmed NO2 emissions from frozen aqueous NaNO3 solutions irradiated at 313 nm were monitored as function of nitrate concentration and heating rate, H, above -30 degrees C. Emissions increase nonmonotonically with temperature, displaying transitions suggestive of underlying metamorphic transformations. Thus, NO2 emissions surge at ca. -8 degrees C in frozen [NO3-] > 200 microM sa...

متن کامل

Isomorphous Substitution of P(V) in Natural Clinoptilolite: Evalution of the Product for Removal of NO3-, NO2- and F - from Aqueous Solutions

Nitrate is an anion of major importance particularly in biological areas. Excessive amounts in water supplies indicate pollution from sewage or agricultural effluents. The effects of excessive quantities of nitrate in water are well known. In this research structural modification of natural clinoptilolite by isomorphic substitution was performed. Isomorphously substituted zeolite was prepar...

متن کامل

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 48  شماره 

صفحات  -

تاریخ انتشار 2015